Tradutor Gingado

Compressor
Question book.svg
Esta página ou secção não cita fontes confiáveis e independentes, o que compromete sua credibilidade (desde março de 2015). Por favor, adicione referências e insira-as corretamente no texto ou no rodapé. Conteúdo sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros e acadêmico)
O compressor é um equipamento industrial concebido para aumentar a pressão de um fluido em estado gasoso (ar, vapor de água, hidrogênio, etc.. Normalmente, conforme a equação de Clapeyron, a compressão de um gás também provoca o aumento de sua temperatura.


Tipos[editar | editar código-fonte]

Os compressores podem ser classificados em 2 tipos principais, conforme seu princípio de operação:
  • Compressores de deslocamento positivo (ou Estáticos): Estes são subdivididos ainda em Alternativos ou Rotativos.
Nos compressores alternativos a compressão do gás é feita em uma câmara de volume variável por um pistão, ligado a um mecanismo biela-manivela similar ao de um motor alternativo. Quando o pistão no movimento ascendente comprime o gás a um valor determinado, uma válvula se abre deixando o gás escapar, praticamente com pressão constante. Ao final do movimento de ascensão, a válvula de exaustão se fecha, e a de admissão se abre, preenchendo a câmara a medida que o pistão se move.
Nos compressores rotativos, um rotor é montado dentro de uma carcaça com uma excentricidade (desnivelamento entre o centro do eixo do rotor e da carcaça). No rotor são montadas palhetas móveis, de modo que a rotação faz as palhetas se moverem para dentro e para fora de suas ranhuras. O gás contido entre duas palhetas sucessivas é comprimido a medida o volume entre elas diminui devido à rotação e à excentricidade do rotor.
Animação de um compressor axial.
  • Compressores de Dinâmicos:Estes são subdivididos ainda em centrífugos ou axiais.
Os compressores dinâmicos ou turbo compressores possuem dois componentes principais: impelidor e difusor. O impelidor é um componente rotativo munido de pás que transfere ao gás a energia recebida de um acionador. Essa transferência de energia se faz em parte na forma cinética e em outra parte na forma de entalpia. Posteriormente, o escoamento estabelecido no impelidor é recebido por um componente fixo denominado difusor, cuja função é promover a transformação da energia cinética do gás em entalpia, com conseqüente ganho de pressão. Os compressores dinâmicos efetuam o processo de compressão de maneira contínua, e portanto correspondem exatamente ao que se denomina, em termodinâmica, um volume de controle.
Os compressores atualmente são utilizados em diversas aplicações. A mais simples é a compressão de ar, seja para acionamento e controle de válvulas, alimentação de motores ou turbinas a gás, até aplicações mais complexas, como o transporte de gás natural, injeção de CO2 em reservatórios subterrâneos, ou compressão de hidrocarbonetos em ciclos de refrigeração.
Quando são aplicados na alimentação forçada de motores, os compressores ou turbo compressores são chamados de sistemas de indução forçada. Eles comprimem o ar que flui para o motor. A principal diferença entre um turbocompressor e um compressor é a fonte de energia. Em um compressor, há uma correia que o conecta diretamente ao motor. Ele obtém sua energia da mesma forma como o alternador do carro por exemplo. Um turbocompressor e acionado por uma turbina, que retira energia dos gases de escape do motor e montada no mesmo eixo que o compressor.

Compressores rotativos[editar | editar código-fonte]

Nos compressores rotativos, os gases são comprimidos por elementos giratórios. Outras das particularidades destes tipos de compressores são por exemplo as menores perdas mecânicas por atrito, pois dispensam um maior número de peças móveis, a menor contaminação de ar com óleo lubrificante, a ausência de reações variáveis sobre as fundações que provocam vibrações, o fato de a compressão ser feita de um modo continuo e não intermitente, como sucede nos alternativos e a ausência de válvulas de admissão e de descarga que diminui as perdas melhorando o rendimento volumétrico. Outro aspecto muito importante, para os diferentes tipos, prende-se com a economia de energia, com os rendimentos volumétrico, associados a fugas, e mecânico, associado a movimentos relativos entre as peças que constituem a máquina, e com a manutenção dos mesmos.

Compressores de parafusos[editar | editar código-fonte]

Esse tipo de compressor possui dois rotores em forma de parafusos que giram em sentido contrario, mantendo entre si uma condição de engrenamento. A conexão do compressor com o sistema se faz através das aberturas de sucção e descarga, diametralmente opostas: O gás penetra pela abertura de sucção e ocupa os intervalos entre os filetes dos rotores. A partir do momento em que há o engrenamento de um determinado filete, o gás nele contido fica encerrado entre o rotor e as paredes da carcaça. A rotação faz então com que o ponto de engrenamento vá se deslocando para a frente, reduzindo o espaço disponível para o gás e provocando a sua compressão. Finalmente, é alcançada a abertura de descarga, e o gás é liberado. De acordo com o tipo de acesso ao seu interior, os compressores podem ser classificados em herméticos, semi-herméticos ou abertos. A categoria dos compressores de parafuso pode também ser sub-dividida em compressores de parafuso duplo e simples. Os compressores de parafuso podem também ser classificados de acordo com o número de estágios de compressão, com um ou dois estágios de compressão (sistemas compound)

Compressores de parafusos de baixa pressão[editar | editar código-fonte]

O principio de funcionamento é o mesmo do compressor de parafuso, eles trabalham com pressões iguais ao soprador lóbulo, a única diferença que os rotores têm uma cobertura especial de teflon para garantir menores folgas e ausência de contato do óleo com o ar, esses tipos de sopradores são isentos de óleo e com eficiência superior ao lóbulo (Roots), em pressões mais altas sua vida útil é superior.

Compressores de parafusos simples[editar | editar código-fonte]

O compressor de parafuso simples, consiste num elemento cilíndrico com ranhuras helicoidais, acompanhado por duas rodas planas dispostas lateralmente e girando em sentidos opostos. O parafuso gira com uma certa folga dentro de uma carcaça composta de uma cavidade cilíndrica. Esta contém duas cavidades laterais onde se alojam as rodas planetárias. O parafuso é acionado pelo motor, e está encarregado de acionar as duas rodas. O processo de compressão ocorre tanto na parte superior como na inferior do compressor. Com isto consegue-se aliviar a carga radial sobre os mancais, de modo a que a única carga que atua sobre os mesmos, além daquela resultante do próprio peso, é atuante sobre os eixos das rodas planetárias, resultante da pressão do gás nos dentes das mesmas durante o engrenamento.

Compressores de parafuso duplo[editar | editar código-fonte]

As secções transversais deste tipo de compressores podem apresentar configurações distintas. No entanto, em ambos os casos, o rotor macho apresenta quatro lóbulos, enquanto que o rotor fêmea, apresenta seis reentrâncias (ou gargantas). Normalmente, o veio do motor atua sobre o rotor macho, que por sua vez aciona o rotor fêmea. Um compressor parafuso duplo pode ser descrito como uma máquina de deslocamento positivo com dispositivo de redução de volume. O gás é comprimido simplesmente pela rotação dos rotores acoplados. Este gás percorre o espaço entre os lóbulos enquanto é transferido axialmente da sucção para a descarga. Sucção Quando os rotores giram, os espaços entre os lóbulos abrem-se e aumentam de volume. O gás então é succionado através da entrada e preenche o espaço entre os lóbulos. Quando os espaços entre os lóbulos alcançam o volume máximo, a entrada é fechada. O gás admitido na sucção fica armazenado em duas cavidades helicoidais formadas pelos lóbulos e a câmara onde os rotores giram.

Compressão[editar | editar código-fonte]

Os lóbulos do rotor macho começarão a encaixar-se nas ranhuras do rotor fêmea no fim da sucção, localizada na traseira do compressor. Os gases provenientes de cada rotor são unidos numa cunha em forma de "V", com a ponta desse "V" situada na intersecção dos fios, no fim da sucção. Posteriormente, em função da rotação do compressor, inicia-se a redução do volume no "V", ocorrendo a compressão do gás.

Descarga[editar | editar código-fonte]

No compressor de parafuso não existem válvulas para determinar quando a compressão termina. A localização da câmara de descarga é que determina quando isto acontece. São utilizadas duas aberturas: uma para descarga radial na saída final da válvula de deslizamento e uma para descarga axial na parede de final de descarga. O posicionamento da descarga é muito importante pois controla a compressão , uma vez que determina a razão entre os volumes internos. O processo de descarga é finalizado quando espaço antes ocupado pelo gás é tomado pelo lóbulo do rotor macho. Este sistema de descarga confere a este tipo de compressores uma vantagem adicional perante os compressores alternativos: a capacidade de operarem com razões de compressão mais altas. Essa vantagem, deve-se ao fato de no final da descarga dos compressores de parafuso, todo o gás se ter expandido, isto é nenhum gás permanece dentro da câmara como acontece nos compressores alternativos.

Compressores compound[editar | editar código-fonte]

Enquanto que a maioria dos compressores efetua a compressão num único estágio, estes usam dois pares de rotores. A compressão é repartida entre esses dois estágios, existindo entre cada um deles um processo de arrefecimento do gás que está a ser comprimido. Com isto, para além da eficiência energética ser superior, a temperatura do gás de descarga é inferior àquela que seria obtida caso o compressor efetuasse a compressão num único estágio. Nos compressores de parafuso arrefecidos a óleo, o óleo e o respectivo sistema de arrefecimento, são normalmente suficientes para garantir que a temperatura dos gases de escape não são demasiado elevadas. Estas poderiam por em causa quer a sua lubrificação, quer a sua vida útil do equipamento. No entanto, quando a aplicação em causa exigir a utilização de compressões isentas de óleo, os compressores de parafuso compound são uma boa solução. Nestes, mesmo que não se use o óleo, a existência de um sistema de arrefecimento a ar ou a água entre os dois estágios de compressão, é o suficiente para garantir temperaturas do gás de descarga que não sejam demasiado elevadas.

Compressores herméticos, semi-herméticos e abertos[editar | editar código-fonte]

Nos compressores herméticos, aplicados apenas para pequenas potências, o motor e o compressor encontram-se acoplados e ambos encerrados por invólucro metálico selado.
Nos semi-herméticos, compressores mais modernos que os anteriores, apesar de o motor e o compressor se encontrarem acoplados e envolvidos por um invólucro metálico, este pode ser desparafusado com vista a uma manutenção local. Os compressores abertos são aqueles em que o acesso ao seu interior é facilitado. Podem ser abertos e reparados no próprio local de funcionamento. O motor encontra-se separados do compressor, sendo a transmissão efetuada normalmente através de correias.

Compressores Dinâmicos[editar | editar código-fonte]

Os compressores dinâmicos radias, no qual o escoamento de gás de saída é perpendicular ao eixo, são chamados compressores centrífugos. Há modelos de compressores em que o escoamento do gás é paralelo ao eixo, chamados compressores axiais. A diferença construtiva e de aplicação entre os dois tipos e bastante perceptível. Os compressores centrífugos são adequados a gases venenosos, inflamáveis, em que se precisa comprimir uma grande quantidade de gas a uma alta pressão. Os compressores axiais são adequados a gases menos perigosos, em grandes vazões e cuja pressão de descarga não é tão alta (até 30 bar), embora seja possível obter taxas de compressão duas vezes superiores a dos compressores centrífugos, em uma mesma carcaça.

Instalação e manutenção[editar | editar código-fonte]

No projeto de um compressor de parafuso devem-se ter certos cuidados de modo a facilitar a sua instalação e manutenção:
  • Os painéis e as tampas devem ser de fácil remoção com fechos de abertura rápida;
  • Purgador exterior de modo a permitir uma rápida mudança do óleo;
  • Filtro de aspiração de fácil acesso;
  • Uma secção reduzida do aparelho não requer muito espaço, permitindo a instalação mesmo em áreas limitadas;
  • Acesso simplificado para a limpeza do refrigerador;
  • Os elementos da assistência de rotina devem ser agrupados na mesma área, reduzindo o tempo de paragem e os custos;
  • Intervalo de manutenção normalizado e reduzidos;
  • Níveis de ruído baixos;
  • Os compressores devem ser concebidos, sempre que possível, para passar através de portas normais.
Os compressores de parafuso, por apresentarem poucas peças móveis e não apresentarem válvulas de entrada e saída e operarem com temperaturas internas relativamente baixas, não exigem muita manutenção. Praticamente isentos de vibrações, esses equipamentos têm uma longa vida útil. Para instalá-los, recomenda-se assentá-los em locais distantes de paredes e teto e em pisos bem nivelados.
Para alguns tipos de manutenção, sendo elas rotineiras ou não, é indispensável o acionamento de um técnico, ou empresa especializada na área.
O mercado brasileiro de compressores é extremamente restrito, basicamente se resume aos fabricantes, e as empresas pertencentes ao "mercado paralelo". Dentre as empresas fabricantes, as principais são: Atlas Copco, Chicago Pneumatic, Ingersoll Rand, Mycom, Sabroe, Sullair e Wayne[carece de fontes?].
Existem as empresas que ocupam uma pequena parte desse mercado, o qual é dominado por essas grandes multinacionais. Apesar de não serem muito conhecidas, possuem grandes vantagens, dentre elas preços mais acessíveis (fator extremamente importante no mercado brasileiro), melhor relação com cliente, e mais flexibilidade (devido à menor burocracia). Esses fatores fazem com que as "opções paralelas" aos poucos tomem um espaço um pouco maior no mercado.

Compressores de palheta[editar | editar código-fonte]

O compressor de palhetas possui um rotor ou tambor central que gira excentricamente em relação à carcaça. Esse tambor possui rasgos radiais que se prolongam por todo o seu comprimento e nos quais são inseridas palhetas retangulares, conforme é mostrado no detalhe da figuras abaixo. Compressor de Palhetas – rotor Compressor de Palhetas – vista frontal Quando o tambor gira, as palhetas deslocam-se radialmente sob a ação da força centrífuga e se mantêm em contato com a carcaça. 0 gás penetra pela abertura de sucção e ocupa os espaços definidos entre as palhetas. Novamente observando a figura ao lado, podemos notar que, devido à excentricidade do rotor e às posições das aberturas de sucção e descarga, os espaços constituídos entre as palhetas vão se reduzindo de modo a provocar a compressão progressiva do gás. A variação do volume contido entre duas palhetas vizinhas, desde o fim da admissão até o início da descarga, define, em função da natureza do gás e das trocas térmicas, uma relação de compressão interna fixa para a máquina. Assim, a pressão do gás no momento em que é aberta a comunicação com a descarga poderá ser diferente da pressão reinante nessa região. 0 equilíbrio é, no entanto, quase instantaneamente atingido e o gás descarregado. Compressores de palhetas rotativas são caracterizados pela versatilidade, potência, confiabilidade e relação preço-qualidade. Podem ser encontrados nos comboios, nas obras, destilarias, fábricas de bebidas, instalações de empacotamento e nas grandes e pequenas unidades industriais .

Compressores de lóbulos[editar | editar código-fonte]

Esse tipo de compressor possui dois rotores em que giram em sentido contrário, mantendo uma folga muito pequena no ponto de tangência entre si e com relação à carcaça. O gás penetra pela abertura de sucção e ocupa a câmara de compressão, sendo conduzido até a abertura de descarga pelos rotores,. Os compressores de lóbulos, embora classificados volumétricos, não possuem compressão interna, porque os rotores apenas deslocam o fluido de uma região de baixa pressão para uma de alta pressão. São conhecidos como sopradores ROOTS e constituem um exemplo típico do que se pode chamar de soprador, porque gera aumentos de pressão muito pequenos.
São amplamente utilizados na sobre alimentação de motores e como sopradores de gases de pressão moderada.
Os Compressores tipo roots, são compressores de baixa pressão, que são muito utilizados em transportes pneumáticos e na sobrealimentação dos motores Diesel. Estes compressores apresentam um rendimento volumétrico muito baixo, mas em compensação o rendimento mecânico é elevado. No entanto a principal vantagem destes compressores é a sua grande robustez, o que permite que rodem anos sem qualquer revisão.

Características dos compressores rotativos[editar | editar código-fonte]

Vantagens[editar | editar código-fonte]

  • O movimento é de rotação;
  • A velocidade de rotação é alta, o que permite acoplamento direto e dimensões reduzidas;
  • A fundação pode ser pequena;
  • O rendimento volumétrico é alto e independente da relação de pressão do compressor;
  • A ausência de válvulas, a não ser a da retenção de carga;
  • O arrefecimento pode ser feito durante a compressão por meio de óleo;
  • O funcionamento é silencioso

Desvantagens[editar | editar código-fonte]

  • A lubrificação tem que ser eficiente;
  • A contaminação do gás com óleo lubrificante, o que exige um separador de óleo na instalação;
  • Desgaste apreciável por atrito entre os rotores e a carcaça;
  • Fugas internas de gás.
Assim como a equação de Clapeyron , determina que a compressão de um gás resulta no aumento de sua temperatura, o primeiro e o segundo princípio da termodinâmica igualmente não aceitam que exista trabalho sem energia, nesse sentido "para melhorar a performance dos sistemas compressão" tanto do compressor hermético como a temperatura do próprio gás comprimido (agente refrigerador) precisam passar por um processo de resfriamento diminuindo o volume sem alterar a composição, esse processo de resfriamento que muitas vezes é feito erroneamente levando o sistema ao meio "além da perda de energia dissipada na atmosfera" resulta em poluição atmosférica e para capturar essa energia uma solução são os sistemas integrados de condensação que funcionam afixados na carcaça dos compressores herméticos.
O que são Ondas Sísmicas
 
O que são ondas sísmicas?
As ondas sísmicas são movimentos vibratórios das partículas das rochas que se transmitem segundo superfícies concêntricas devido à libertação súbita de energia  no foco sísmico.
 
Que tipos de ondas sísmicas existem?
Existem dois tipos de ondas sísmicas, sendo que umas são chamadas ondas de volume ( de profundidade) que podem ser longitudinais ou primárias (P)e ondas transversais ou secundárias (S), e outras que se denominam ondas superficiais, que podem ser ondas de Love  e ondas de Rayleigh, sendo assim no total originam-se quatro tipos de ondas sísmicas.
 
Como se propagam as ondas sísmicas?
As ondas Primárias propagam-se através dos líquidos, sólidos e dos gases e a sua propagação pode ser comparada à das ondas sonoras. A sua propagação produz-se por uma série de impulsos alternados de compressão e de distensão através das rochas, havendo, assim variações do volume do material. Estas ondas deslocam-se no sentido da propagação da onda, (paralelamente).
As ondas S propagam-se nos sólidos mas não nos líquidos e o seu comportamento pode ser comparado ao das ondas luminosas. São mais lentas que as anteriores,  pelo que chegam ás estações sismográficas com atraso variável em relação ás ondas P. Estas ondas provocam mudança da forma do material, mas não do volume. As ondas S deslocam-se num plano perpendicular á direcção de propagação.
As ondas love e Rayleigh, tal como as S são ondas transversais, resultantes das interferências entre as ondas S  e entre as ondas S e P, respectivamente. em que as partículas constituintes dos materiais rochosos vibram perpendicularmente á direcção de propagação da frente da onda. As ondas sísmicas Rayleigh descrevem trajectórias elípticas semelhantes às vagas do mar. São as ondas mais lentas, mas simultaneamente as mais destruidoras.
Simiologia
Quando escolhemos uma melancia para comprar sem que possamos ver o seu interior, usualmente lhe damos algumas batidinhas e escutamos o som. Se o som estiver limpo, provavelmente estará madura. Já um som mais abafado indicará provavelmente que ela passou do ponto. Isso ilustra dois pontos sobre as ondas sísmicas: (1) a energia da batida se propaga pelo interior da melancia, e (2) a natureza do conteúdo da melancia afeta o som.

Uma onda transmite energia de um lugar para outro. O bumbo de um tambor viaja pelo ar como uma seqüência de ondas, assim como o calor do sol chega até a Terra como ondas, e uma batidinha na melancia viaja através dela. Ondas de vibrações que viajam pelas rochas são ditas ondas sísmicas. Terremotos e explosões geram vários tipos dessas ondas. A sismologia estuda os tremores de terra e também a natureza do interior da Terra com base em evidências de ondas sísmicas.

Um terremoto irradia vários tipos diferentes dessas ondas a partir do seu foco (hipocentro ou ponto inicial) cuja projeção na superfície lhe chamamos epicentro. Parte das ondas de um terremoto podem atingir a superfície irradiando-se a partir do epicentro por toda a superfície da Terra.



ONDAS DE CORPO

Ondas de Corpo


Existem dois tipos fundamentais de ondas no interior da Terra. A onda P, longitudinal, é uma onda elástica que provoca a compressão e a expansão da rocha.

As ondas P têm velocidade entre 4 e 7 km/s na crosta terrestre e em torno de 8 km/s no manto superior. A velocidade do som no ar, que também é uma onda P, é de 0,34 km/s e os jatos supersônicos chegam a 0,85 km/s. Na água, a onda P se propaga a 1,5 km/s.

As ondas P são chamadas primárias porque são as primeiras que podem ser observadas nos sismogramas.

O segundo grupo principal de ondas, chamadas ondas S (shear) são aquelas cujas partículas vibram na direção perpendicular à propagação da onda. Sua velocidade é menor, girando em torno de 3 e 4 km/s na crosta. O resultado dessa relativa lentidão é que seu registro sempre ocorre algum tempo depois do registro da onda P.

Diferentemente das ondas P, as ondas S se propagam apenas nos meios sólidos, porque as moléculas de líquidos e gases podem apenas transmitir pressões. Uma tensão lateral (tangencial) entre as partículas não pode ser transmitida em meios não sólidos.

Ondas de Superfície
ONDAS DE SUPERFÍCIE

Junto à superfície as ondas P e S podem combinar e propagar-se horizontalmente formando ondas de superfície. As ondas de superfície viajam ainda mais lentamente que as ondas de corpo. Há dois tipos de ondas superficiais. As ondas Rayleigh se propagam com um movimento de sobe-e-desce das partículas como as ondas do mar. As ondas Love vibram lateralmente como rasteja um réptil. Durante um terremoto portanto, a Terra se chacoalha como as ondas do mar e rasteja como um lagarto.

COMO MEDIR AS ONDAS SÍSMICAS

A medição das ondas sísmicas se dá com um conjunto de
sensor + registrador => registro
O sensor (sismômetro) é o responsável por responder aos movimentos e estímulos da superfície muito precisamente. O sensor tem uma massa metálica (geralmente um ímã) suspensa por uma mola oscilando próximo a uma bobina. Pequenas variações na posição da massa geram uma diferença de potencial nas extremidades da bobina (Lei de Lenz). Se esse sinal elétrico for amplificado e digitalizado pelo registrador (sismógrafo), temos o registro sismológico (sismograma).

Registro sísmico
Onda sísmica
Ir para: navegação , pesquisa    
Question book.svg
Esta página ou secção não cita fontes confiáveis e independentes, o que compromete sua credibilidade (desde abril de 2012). Por favor, adicione referências e insira-as corretamente no texto ou no rodapé. Conteúdo sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros e acadêmico)
As ondas sísmicas são movimentos vibratórios das partículas das rochas que se transmitem segundo superfícies concêntricas devido à libertação súbita de energia no foco sísmico. São ondas que se propagam através da Terra, geralmente como consequência de um sismo, ou devido a uma explosão. Estas ondas são estudadas pelos sismólogos, e medidas por sismógrafos, sismómetros ou geofones. Nos estudos sísmicos de jazidas de petróleo também podem ser utilizados hidrofones.


Tipos de ondas[editar | editar código-fonte]

Diagrama mostrando a propagação de ondas de corpo (cima) e de superfície (baixo).

Ondas de corpo ou volume[editar | editar código-fonte]

As ondas de corpo ou volume propagam-se através do interior da Terra. Apresentam percursos radiais deformados devido às variações de densidade e composição do interior da Terra. Trata-se de um efeito semelhante à refracção de ondas de luz. As ondas de corpo são as responsáveis pelos primeiros tremores sentidos durante um sismo bem como por muita da vibração produzida posteriormente durante o mesmo. Existem dois tipos de ondas de corpo: primárias (ondas P) e secundárias (ondas S).
As ondas P ou primárias são as primeiras a chegar, pois têm uma velocidade de propagação maior. São ondas longitudinais que fazem a rocha vibrar paralelamente à direcção da onda, tal como um elástico em contracção. Verifica-se alternadamente uma compressão seguida de uma distensão com amplitudes e períodos baixos, impondo aos corpos sólidos elásticos alterações de volume (contudo não há alterações na forma). No ar, estas ondas de pressão tomam a forma de ondas sonoras e propagam-se à velocidade do som. A velocidade de propagação deste tipo de ondas varia com o meio em que se propagam, sendo típicos valores de 330 m/s no ar, 1450 m/s na água e 5000 m/s no granito. Não são tão destrutivas como as ondas S ou as ondas de superfície que se lhes seguem. A velocidade de propagação destas ondas é, em geral, ligeiramente inferior ao dobro daquela das ondas S.
As ondas S ou secundárias são ondas tranversais ou de cisalhamento, o que significa que o solo é deslocado perpendicularmente à direcção de propagação como num chicote. No caso de ondas S polarizadas horizontalmente, o solo move-se alternadamente para um e outro lado. São mais lentas que as P, com velocidades de propagação entre 2000 e 5000 m/s, sendo as segundas a chegar. Estas provocam alterações morfológicas, contudo não há alteração de volume. As ondas S propagam-se apenas em corpos sólidos, uma vez que os fluidos (gases e líquidos) não suportam forças de cisalhamento. A sua velocidade de propagação é cerca de 60% daquela das ondas P, para um dado material. A amplitude destas ondas é várias vezes maior que a das ondas P.

Ondas de superfície[editar | editar código-fonte]

As ondas de superfície são semelhantes às ondas que se observam à superfície de um corpo de água e propagam-se imediatamente acima da superfície terrestre. Deslocam-se mais lentamente que as ondas de corpo. Devido à sua baixa frequência, longa duração e grande amplitude, podem ser das ondas sísmicas mais destrutivas. Propagam-se pela superfície a partir do epicentro de um sismo (tal como as ondas de uma pedra ao cair num charco), com velocidades mais baixas que as ondas de corpo. Existem dois tipos de ondas de superfície: ondas de Rayleigh e ondas de Love.
As ondas de Rayleigh (R) são ondas de superfície que se propagam como as ondas na superfície da água. A existência destas ondas foi prevista por John William Strutt, Lord Rayleigh, em 1885. São mais lentas que as ondas de corpo. Essas ondas são o resultado da interferência de ondas P e S. Estas ondas provocam vibração no sentido contrário à propagação da onda, ou seja, um movimento de rolamento (descrevem uma órbita elíptica), e a sua amplitude diminui rapidamente com a profundidade.
As ondas Love (L) são ondas de superfície que produzem cisalhamento horizontal do solo e a sua energia é obrigada a permanecer nas camadas superiores da Terra por ocorrer por reflexão interna total. São assim chamadas em honra de A.E.H. Love, um matemático britânico que criou um modelo matemático destas ondas em 1911. Essas ondas são o resultado da interferência de duas ondas S. São ligeiramente mais rápidas que as ondas de Rayleigh. São ondas cisalhantes altamente destrutivas.

A importância das ondas sísmicas para o conhecimento do interior da Terra[editar | editar código-fonte]

Trajectos percorridos por ondas produzidas por um sismo.
Para o estudo do interior do planeta faz-se uso das ondas P e S produzidas pelos terremotos, uma vez que estas se deslocam de forma diferente nos vários tipos de material.
As ondas P deslocam-se a grande velocidade no manto, sofrendo uma grande redução daquela ao atravessarem a descontinuidade de Wiechert-Gutenberg, pois ocorre a passagem de um meio sólido para um meio líquido (neste último têm mais dificuldades em propagar-se, contudo a sua velocidade vai aumentando gradualmente devido ao aumento de pressão e logo da consistência). Esta alteração do meio foi concluída devido à diferença de velocidade média entre as ondas P no mesmo hemisfério em relação às das antípodas. Na descontinuidade de Lehmann, que separa o núcleo externo do núcleo interno voltam a ter um aumento repentino da velocidade – meio sólido.
Quando ocorre um sismo, os sismógrafos situados perto do epicentro, até uma distância angular de 105º, conseguem detectar as ondas P e S, mas aqueles situados a distâncias angulares maiores não conseguem detectar as ondas S. Isto deve-se ao facto de as ondas S não poderem atravessar líquidos. Foi este facto que levou Oldham a sugerir que a Terra possuía um núcleo líquido.

Velocidade das Ondas Sísmicas[editar | editar código-fonte]

A velocidade das ondas sísmicas pode ser calculada a partir das seguintes fórmulas geofísicas:
Vp=\sqrt{\left ( \frac{(K+4\mu /3)}{\delta} \right )} e Vs=\sqrt{\left ( \frac{\mu}{\delta} \right )}
Legenda:
  • Vp\rightarrow Velocidade das Ondas P
  • Vs \rightarrow Velocidade das Ondas S
  • K \rightarrow módulo de incompressibilidade
  • \mu \rightarrow rigidez do material a ser atravessado (para materiais líquidos, \mu=0)
  • \delta \rightarrow densidade do material a ser atravessado

Ligações externas[editar | editar código-fonte]

Princípio de Funcionamento do Motor a Combustão Interna Ciclo Otto

 
O motor a combustão interna ciclo Otto é uma máquina que trabalha com os princípios da termodinâmica e com os conceitos de compressão e expansão de fluidos gasosos para gerar força e movimento rotativo. Criado e patenteado por Nikolaus August Otto, por volta do ano de 1866, este motor funciona com um ciclo de quatro tempos e os mesmos princípios até os dias atuais.
2008-bmw-x6-sports-activity-coupe-engine-1920x1440


[Imagem: Copyright Serious Wheels]
Esta máquina geradora de força motriz vem evoluindo gradativamente com o avanço da tecnologia e novos estudos aplicados a materiais e combustíveis com o objetivo de deixá-lo com uma eficiência energética maior. Em outras matérias vimos que o motor é composto de vários componentes e estudamos sua função e aplicação no motor, agora é o momento de juntarmos todas as peças e fazer o motor funcionar entendendo o princípio de funcionamento.
O motor de combustão interna é uma máquina que absorve ou admite o ar da atmosfera, o combustível do tanque, une estes dois elementos formando a mistura proporcional de ar mais combustível o mais ideal possível e comprime a mesma em um local denominado câmara de combustão. Depois que esta mistura está comprimida pelo pistão na câmara de combustão o sistema de ignição, sincronizado com o motor, gera uma centelha elétrica nas velas que estão rosqueadas dentro da câmara inflamando a mistura, gerando uma explosão e conseqüentemente um deslocamento de massa empurrando o pistão para baixo e gerando força, torque e movimento rotativo. Quando este processo ocorre é finalizado com a expulsão dos gases queimados para fora do motor. Na verdade o que acabamos de ver foi o princípio de funcionamento do motor com o ciclo de quatro tempos, mas agora, vamos ver este processo mais detalhado analisando as ilustrações com os quatro tempos bem definidos e verificando o funcionamento ligando ao estudo aos componentes do motor.
1° tempo do motor, admissão; vamos entender que neste momento o motor está desligado pronto para receber o movimento inicial do motor de partida que está acoplado ao motor a combustão. Neste mesmo momento vamos colocar o pistão que está ligado à biela e posteriormente ao virabrequim em uma posição na qual conhecemos como P.M.S., ponto morto superior, é o curso máximo que o pistão alcança ao subir dentro do cilindro. Temos que entender também que o eixo virabrequim está ligado e sincronizado com o eixo comando de válvulas através de uma correia dentada, então dizemos, que a parte de baixo do motor que corresponde as peças que estejam dentro do bloco como virabrequim, bielas e pistões estão sincronizados com a parte de cima do motor que corresponde ao cabeçote e suas peças. Neste momento vamos ligar o motor de arranque que se acopla ao volante do motor que também está ligado ao virabrequim e o motor de combustão interna começa a girar. O virabrequim girando começa a movimentar a biela e conseqüentemente o pistão que está no P.M.S. e desce para o P.M.I., ponto morto inferior, que é o curso máximo que o pistão alcança ao descer dentro do cilindro. Como o virabrequim está ligado ao comando de válvulas, este por sua vez começa a acionar, através do “came”, a válvula de admissão no cabeçote permitindo a passagem de ar e combustível vindos do coletor de admissão passando pelos dutos internos do cabeçote. Desta maneira o pistão que está descendo cria uma sucção e aspira o ar mais combustível para o interior do cilindro até que o pistão chegue ao P.M.I. completando o 1° tempo e 180° graus, meia volta do motor.
cilindro1
2° tempo do motor, compressão; quando o pistão inverte o sentido de movimento começa a subir do P.M.I. em direção ao P.M.S. dando início ao segundo tempo do motor. A medida que o virabrequim vai girando empurrando a biela e conseqüentemente o pistão para a parte superior do cilindro, a mistura de ar mais combustível vai sendo comprimida no interior do cilindro e o comando de válvula que antes tinha o seu ressalto ou “came” pressionando a válvula à descer agora passa por ela e mola de válvula retorna a mesma vedando a parte interna do cilindro. Devemos observar que existe uma determinada folga dimensional entre cilindro e pistão para que o mesmo possa deslizar dentro do cilindro, porém, a mistura não pode escapar por esta folga entrando em cena a atuação dos anéis de segmento que vedam esta passagem. Quando o pistão chega ao seu curso máximo, P.M.S., a mistura está toda comprimida sem ter por onde escapar, pois as válvulas estão fechadas e os anéis vedando, então todo o volume aspirado no tempo anterior agora está pressurizado na câmara de combustão finalizando o segundo tempo e completando uma volta completa do virabrequim 360°.
cilindro2
3° tempo do motor, Explosão; agora com o fim do segundo tempo o pistão não tem outra saída a não ser de inverter novamente o sentido de movimento do P.M.S. para o P.M.I., só que agora contando com uma força extra. A mistura comprimida na câmara de combustão recebe uma centelha ou faísca da vela, ocorre um deslocamento de massa devido à explosão dentro da câmara, o pistão é forçado a descer empurrado pela expansão dos gases, com isso, o pistão se desloca do P.M.S. para o P.M.I., mantendo ainda as válvulas do cabeçote fechadas, já que o comando de válvulas não está com nenhum ressalto tocando as válvulas. Na verdade, o terceiro tempo do motor é considerado o principal tempo porque é neste tempo que o motor gera força motriz e torque que será transmitido as rodas por meio de rotação. Quando o pistão chega ao ponto morto inferior P.M.I. encerra-se o terceiro tempo do motor e o virabrequim completa uma volta e meia 540°.
cilindro3
4° tempo do motor, escape; o motor admitiu a mistura no primeiro tempo, comprimiu e explodiu no segundo e terceiro tempo, agora é a vez de colocar os gases resultantes da queima para fora do motor. Neste caso, temos o pistão no fim do terceiro tempo na posição P.M.I., pronto para iniciar o quarto tempo. O comando de válvulas está sincronizado com o virabrequim e o seu ressalto começa a tocar a válvula de escape e o pistão começa a subir empurrando a mistura queimada em direção dos dutos do cabeçote e coletor de escape. Quando o pistão alcança o P.M.S. os gases que se encontravam dentro do cilindro foram expulsos para fora limpando o cilindro, o comando de válvulas encerra sua ação sobre a válvula de escape. Neste momento se encerra o quarto tempo com o motor completando duas voltas 720°. Temos agora um ciclo completo do motor quatro tempos ciclo Otto e enquanto o motor estiver ligado e funcionando este ciclo se repete todas às vezes. No final do quarto tempo do motor o pistão se encontra em P.M.S., exatamente pronto para se iniciar o primeiro tempo novamente quando o mesmo se deslocará para o P.M.I. com o ressalto ou “came” do comando abrindo a válvula de admissão, e assim por diante, dando continuidade a todos os tempos do motor de combustão interna ciclo Otto.
cilindro4
Oi Pessoal é o "Hacker" me desculpem por estar a mudar de tema mais tenho alguns assuntos relacionados ao meu curso que vou ter que postar para expandir o conhecimento em Mecânica...

Ciclo de Otto
    
   
O Ciclo de Otto é um ciclo termodinâmico, que idealiza o funcionamento de motores de combustão interna de ignição por centelha. Foi definido por Beau de Rochas e implementado com sucesso pelo engenheiro alemão Nikolaus Otto em 1876, e posteriormente por Étienne Lenoir e Rudolf Diesel.
Motores baseados neste ciclo equipam a maioria dos automóveis de passeio atualmente. Para esta aplicação, é possível construir motores a quatro tempos mais eficientes e menos poluentes em comparação aos motores a dois tempos, apesar do maior número de partes móveis, maior complexidade, peso e volume, comparando motores de mesma potência.


O modelo ideal[editar | editar código-fonte]

Diagrama Pressão X Volume
Diagrama Temperatura-Entropia
O diagrama idealizado de quatro estágios do ciclo de Otto:
o estágio de admissão (0-1) é realizado por um processo isobarico de expansão, seguido por processo adiabatico de  compressão . Através da combustão do combustível, calor é adicionado em um processo isocórico, seguido por um processo adiabático de expansão, caracterizando o ciclo de  força . O ciclo é fechado pela  exaustão , caracterizada por processo de refrigeração isocórica e compressão isobárica.
O ciclo ideal se constitui dos seguintes processos:
  1. Admissão isobárica 0-1.
  2. Compressão adiabática 1-2.
  3. Combustão isocórica 2-3, expansão adiabática 3-4.
  4. Abertura de válvula 4-5, exaustão isobárica 5-0.
A taxa de compressão volumétrica é definida por: \alpha=\frac{V_2}{V_1}.
O rendimento térmico do ciclo reversível é definido por: \mu=1-\frac{T_1}{T_2}.
Então: \mu=1-\frac{1}{\alpha^{\gamma-1}}.
\gamma representa a razão entre a capacidade térmica à pressão e volume constantes.

Ciclos reais[editar | editar código-fonte]

Ciclo a quatro tempos
Os ciclos termodinâmicos associados às máquinas reais se diferem sensivelmente da idealização, já que os processos ocorrem apenas de forma aproximada à maneira descrita e que os motores estão sucetíveis a fenômenos não reversíveis como o atrito.

Ciclo mecânico[editar | editar código-fonte]

Considerando o uso de apenas duas válvulas que são comandadas pelos ressaltos de árvore de cames, uma designada por válvula de admissão (à direita na animação), que permite a introdução no cilindro de uma mistura gasosa composta por ar e combustível e outra designada como válvula de escape (à esquerda na animação), que permite a expulsão para a atmosfera dos gases queimados, o ciclo de funcionamento de um motor de combustão a 4 tempos é o seguinte:
  1. Com o êmbolo (também designado por pistão) no PMS (ponto morto superior) é aberta a válvula de admissão, enquanto se mantém fechada a válvula de escape. A dosagem da mistura gasosa é regulada pelo sistema de alimentação, que pode ser um carburador ou pela injeção eletrônica, em que se substitui o comando mecânico destes sistemas por um eletrônico e conseguindo-se assim melhores prestações, principalmente quando solicitadas respostas rápidas do motor. O pistão é interligado a biela e esta por sua vez é interligada ao eixo de manivelas (virabrequim)impulsionado-o em um movimento de rotação. O pistão move-se então até ao PMI (ponto morto inferior). A este passeio do êmbolo é chamado o primeiro tempo do ciclo, ou tempo de admissão.
  2. Fecha-se nesta altura a válvula de admissão, ficando o cilindro cheio com a mistura gasosa, que é agora comprimida pelo pistão, impulsionado no seu sentido ascendente em direcção à cabeça do motor por meio de manivelas até atingir de novo o PMS. Na animação observa-se que durante este movimento as duas válvulas se encontram fechadas. A este segundo passeio do êmbolo é chamado o segundo tempo do ciclo, ou tempo de compressão.
  3. Quando o êmbolo atingiu o PMS, a mistura gasosa que se encontra comprimida no espaço existente entre a face superior do êmbolo e a cabeça do motor, denominado câmara de combustão, é inflamada devido a uma faísca produzida pela vela e "explode". O aumento de pressão devido ao movimento de expansão destes gases empurra o êmbolo até ao PMI, impulsionando desta maneira por meio de manivelas e produzindo a força rotativa necessária ao movimento do eixo do motor que será posteriormente transmitido às rodas motrizes. A este terceiro passeio do êmbolo é chamado o terceiro tempo do ciclo, tempo de explosão, tempo motor ou tempo útil, uma vez que é o único que efectivamente produz trabalho, pois durante os outros tempos, apenas se usa a energia de rotação acumulada no volante ("inércia do movimento"), o que faz com que ele ao rodar permita a continuidade do movimento por meio de manivelas durante os outros três tempos.
  4. O cilindro encontra-se agora cheio de gases queimados. É nesta altura, em que o êmbolo impulsionado por meio de manivelas retoma o seu movimento ascendente, que a válvula de escape se abre, permitindo a expulsão para a atmosfera dos gases impelidos pelo êmbolo no seu movimento até ao PMS, altura em que se fecha a válvula de escape. A este quarto passeio do êmbolo é chamado o quarto tempo do ciclo, ou tempo de exaustão(escape).
  • Após a expulsão dos gases o motor fica nas condições iniciais permitindo que o ciclo se repita.

Análise de Ciclo[editar | editar código-fonte]

Processos 1-2 e 3-4 efetuam trabalho mas nenhuma transferência de calor ocorre durante a expansão e compressão adiabática. Processos 2-3 e 4-1 são isocóricas; assim, transferência de calor ocorre mas nenhum trabalho é efetuado. Nenhum trabalho é realizado durante uma isocórica (volume constante) porque trabalho necessita movimento; se o volume do pistão não muda nenhum trabalho no eixo é produzido pelo sistema. Quatro equações diferentes podem ser obtidas negligenciando energia cinética e potencial, e considerando a primeira lei da termodinâmica (conservação da energia). Assumindo essas condições a primeira lei é reescrita como:[1]
\Delta{\mathit{E}}=\Delta{\mathit{U}}=\mathit{Q}_{in}-\mathit{W}_{out}
Aplicando isto no ciclo de Otto as equações dos quatro processos são obtidas:
\left(\frac{\mathit{W}_{1-2}}{{m}}\right)=\mathit{u}_2-\mathit{u}_1
\left(\frac{\mathit{W}_{3-4}}{{m}}\right)=\mathit{u}_3-\mathit{u}_4
\left(\frac{\mathit{Q}_{2-3}}{{m}}\right)=\mathit{u}_3-\mathit{u}_2
\left(\frac{\mathit{Q}_{4-1}}{{m}}\right)=\mathit{u}_4-\mathit{u}_1
Uma vez que a primeira lei é expressa como calor adicionado no sistema e trabalho expelido do sistema, então (\mathit{W}_{1-2}/{m}) e (\mathit{Q}_{4-1}/{m}) assumirão sempre valores positivos. Entretanto, como trabalho sempre envolve movimento, processos 2-3 e 4-1 serão omitidos porque ocorrem com volume constante. O trabalho líquido pode ser expresso como:
\left(\frac{\mathit{W}_{ciclo}}{{m}}\right)=\left(\frac{\mathit{W}_{3-4}}{{m}}\right)-\left(\frac{\mathit{W}_{1-2}}{{m}}\right)=(\mathit{u}_3-\mathit{u}_4)-(\mathit{u}_2-\mathit{u}_1)
O trabalho liquido também pode ser encontrado estimando o calor adicionado menos o calor perdido ou expelido.
\left(\frac{\mathit{W}_{ciclo}}{{m}}\right)=\left(\frac{\mathit{Q}_{2-3}}{{m}}\right)-\left(\frac{\mathit{Q}_{4-1}}{{m}}\right)=(\mathit{u}_3-\mathit{u}_2)-(\mathit{u}_4-\mathit{u}_1)
Eficiência térmica é o quociente do trabalho líquido e do calor adicionado no sistema. Após rearranjo, a eficiência térmica pode ser obtida (Trabalho líquido/Calor adicionado):
Equação 1:
\eta=\left(\frac{(\mathit{u}_3-\mathit{u}_2)-(\mathit{u}_4-\mathit{u}_1)}{\mathit{u}_3-\mathit{u}_2}\right)=1-\left(\frac{\mathit{u}_{4}-\mathit{u}_{1}}{\mathit{u}_{3}-\mathit{u}_{2}}\right)
Como alternativa, eficiência térmica pode ser obtida através do calor adicionado e calor rejeitado.
\eta=\left(\frac{{Calor}_{aplicado}-{Calor}_{rejeitado}}{{Calor}_{aplicado}}\right)
\eta=1-\left(\frac{{Calor}_{rejeitado}}{{Calor}_{aplicado}}\right)
\eta=1-\left(\frac{\mathit{Q}_{out}}{\mathit{Q}_{in}}\right)
No ciclo de Otto, não há transferência de calor durante o processo 1-2 e 3-4 porque são processos adiabáticos reversíveis. Calor é suprido somente durante os processos de volume constante 2-3 e calor é expleido somente durante os processos de volume constante 4-1.[2]
Equação 1 pode ser agora relacionada com a equação específica de calor para volumes constantes. A capacidade térmica são particularmente úteis para cálculos termodinâmicos envolvendo o modelo de gás ideal.
{\mathit{c}_{v}}=\left(\frac{\delta{\mathit{u}}}{\delta{T}}\right)_{v}
Reorganizando:
\mathit{u}=({\mathit{c}_{v}})({\delta{T}})
Inserindo a equação específica de calor na equação de eficiência térmica (Equação 1).
\eta=1-\left(\frac{\mathit{c}_{v}(\mathit{T}_{4}-\mathit{T}_{1})}{\mathit{c}_{v}(\mathit{T}_{3}-\mathit{T}_{2})}\right)
Através de rearranjo:
\eta=1-\left(\frac{\mathit{T}_{1}}{\mathit{T}_{2}}\right)\left(\frac{\mathit{T}_{4}/\mathit{T}_{1}-1}{\mathit{T}_{3}/\mathit{T}_{2}-1}\right)
A seguir, analisando os diagramas {T}_{4}/{T}_{1}={T}_{3}/{T}_{2}, assim ambos podem ser omitidos. A equação se reduz para:
Equação 2:
\eta=1-\left(\frac{\mathit{T}_{1}}{\mathit{T}_{2}}\right)
Visto que o ciclo de Otto é um processo isentrópico as equações isentrópicas de gases ideais e relações pressão/volume constantes podem ser usadas para obter as Equações 3 & 4.
Equação 3:
\left(\frac{{T}_{2}}{{T}_{1}}\right)=\left(\frac{{p}_{2}}{{p}_{1}}\right)^{(\gamma-1)/{\gamma}}
Equação 4:
\left(\frac{{T}_{2}}{{T}_{1}}\right)=\left(\frac{{V}_{1}}{{V}_{2}}\right)^{(\gamma-1)}
A dedução das equações anteriores são encontradas resolvendo estas quatro equações respectivamente (onde R é a constante de gases):
\mathit{{c}_{p}}\mathit{ln}\left(\frac{{V}_{1}}{{V}_{2}}\right)-\mathit{R}\mathit{ln}\left(\frac{{p}_{2}}{{p}_{1}}\right)=0
\mathit{{c}_{v}}\mathit{ln}\left(\frac{{T}_{2}}{{V}_{1}}\right)-\mathit{R}\mathit{ln}\left(\frac{{V}_{2}}{{V}_{1}}\right)=0
\mathit{c}_{p}=\left(\frac{\mathit{KR}}{\mathit{{K}-1}}\right)
\mathit{c}_{v}=\left(\frac{\mathit{K}}{\mathit{{K}-1}}\right)
Além disso, simplificando a Equação 4, onde \mathit{r} é a taxa de compressão ({V}_{1}/{V}_{2}):
Equação 5:
\left(\frac{{T}_{2}}{{T}_{1}}\right)=\left(\frac{{V}_{1}}{{V}_{2}}\right)^{(\gamma-1)}={r}^{(\gamma-1)}
Também, note que
{\gamma}=\left(\frac{\mathit{c}_{p}}{{c}_{v}}\right)
onde {\gamma} é a taxa específica.
Invertendo a Equação 4 e aplicando na Equação 2 a eficiência térmica final pode ser expressa como:[2]
Equação 6:
\eta=1-\left(\frac{{1}}{{r}^{(\gamma-1)}}\right)
Da análise da equação 6 é evidente que a eficiência do ciclo de Otto depende diretamente da taxa de compressão \mathit{r}. Desde que \gamma para o ar é 1.4, um aumento em \mathit{r} irá produzir um aumento em \eta. Entretanto, o \gamma para produtos da combustão da mistura combustível/ar é normalmente assumida como 1.3 aproximadamente. A argumentação acima implica que é mais eficiente ter uma taxa de compressão alta. O padrão de compressão é aproximadamente 10:1 para automóveis comuns. Normalmente, não se aumenta muito devido a possibilidade de auto-ignição, ou por "bater bielas", a qual impõe valores de compressão acima do limite superior da taxa de compressão.[1] Durante o processo de compressão 1-2 a temperatura aumenta, assim um aumento da taxa de compressão aumenta a temperatura. Autoignição ocorre quando a temperatura da mistura combustível/ar se torna muito elevada antes de ser inflamada pela ignição. O curso de compressão é destinado para comprimir os produtos antes que a ignição inflame a mistura. Se a taxa de compressão é aumentada, a mistura pode se auto-inflamar antes do curso de compressão ser finalizado, levando o motor a "bater biela". Isto pode danificar os componentes do motor e vai diminuir a potência de freio do motor.

Motores de múltiplas válvulas[editar | editar código-fonte]

Esses motores são apenas aperfeiçoamentos para o ciclo otto ou quatro tempos e sua única diferença é que existem pelo menos duas válvulas para cumprir uma única funcão ao mesmo tempo. Em um motor convencional, existe uma válvula para admissão e uma para exaustão. Existem atualmente 3 configurações para motores multiválvulas, são os modelos com 3, 4 ou 5 válvulas por cilindro. No caso do motor que possui 3 válvulas por cilindro, 2 são para admissão e uma apenas para exaustão, com 4 válvulas, 2 são para admissão e 2 para exaustão e no caso de 5 válvulas são 3 para admissão e 2 para exaustão. A principal função de um motor de múltiplas válvulas é maximizar o fluxo de gases que entram(entra mais oxigênio) e saem(exausta mais gases com menos força) do motor, conseguindo deste modo uma eficiência maior da combustão.

Motor 16 Válvulas[editar | editar código-fonte]

Neste tipo de motor a explosão de quatro cilindros, sua principal característica é a adoção de mais duas válvulas por cilindro, que trabalham simultaneamente as duas ja existentes, cada cilindro possui 4 válvulas (4 cilindros x 4 válvulas = 16 válvulas), aumentando o fluxo de gases do motor, podendo assim desenvolver maior potência. O Primeiro carro feito em série do mundo a utilizar esse sistema foi Triumph Dolomite Sprint, feito pela British Leyland. Este tipo de motor foi maciçamente produzido no Brasil na versão 1 L (um litro) entre o ano de 97 à 2004, devido a uma lei que cobra um imposto (IPI - imposto sobre produtos industrializados') menor por essa cilindrada, se tornando uma boa opção para o consumidor que paga menos por um carro com uma potência similar a de um 1,4L e viabilizando então os custos para seu desenvolvimento. Por se tratar de um motor 1 litro com potência específica mais elevada, exige um custo maior para produção. No seu auge chegou aos 112 cv (cavalos-vapor) ou 82,5 kW, no motor equipado no Gol Turbo que chega à aproximadamente 187,2 km/h (dados da revista CARRO); bom desempenho para um carro com motor de um litro.
Motor 1,8 L 16 V turbo, cortado, veja as válvulas no cilindro.
O proprietário de um automóvel equipado com um motor 16 V. deve ficar atento ao tipo de óleo lubrificante que está usando, bem como o profissional que presta manutenção. Um motor 16 V. requer um profissional experiente neste tipo de Motor, é comum Mecânicos sem conhecimento alegarem que o motor é problemático, o que não é verdade, a verdade é que o motor devido a sua tecnologia exige conhecimento da parte do profissional. O prazo para troca do óleo e a troca da correia dentada, estes indicados no manual do proprietário do automóvel, devem ser rigorosamente obedecidos para evitar uma quebra do motor e um gasto muito maior do que se teria realizando a manutenção correta do motor.

Referências[editar | editar código-fonte]

  1. Ir para: a b Moran, Michael J., and Howard N. Shapiro. Fundamentals of Engineering Thermodynamics. 6th ed. Hoboken, N.J. : Chichester: Wiley ; John Wiley, 2008. Print.
  2. Ir para: a b Gupta, H. N. Fundamentals of Internal Combustion. New Delhi: Prentice-Hall, 2006. Print.


Sinônimos[editar | editar código-fonte]

  • cabeça do motor (pt-PT) ou cabeçote (pt-BR)
  • êmbolo (pt-PT) ou pistão (pt-PT/pt-BR)
  • injecção electrónica (pt-PT) ou injeção eletrônica (pt-BR)
  • tempo de escape (pt-PT) ou tempo de exaustão (pt-BR)
  • válvulas (pt-PT) ou válvulas de cabeçote (pt-BR)
  • válvula de escape (pt-PT) ou válvula de exaustão (pt-BR)
  • veio (ou eixo) de manivelas (pt-PT), cambota (pt-PT), virabrequim (pt-BR), árvore de manivelas (pt-BR)